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Abstract 1 

Using NASA’s A-Train satellite measurements, we evaluate the accuracy of cloud water 2 

content (CWC) and water vapor mixing ratio (H2O) outputs from 19 climate models 3 

submitted to the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment 4 

Report (AR5). We find improvements in 8 AR5 models for cloud water path relative to their 5 

counterparts for the IPCC Fourth Assessment Report. For vertical structures of CWC and H2O, 6 

we find that the model spreads and their differences from the observations are larger in the 7 

upper troposphere (UT) than in the lower and mid-troposphere (LMT). The modeled tropical 8 

oceanic mean CWCs (H2Os) range from ~3% to ~15× (~1% to 2×) of the observations in the 9 

UT and 40% to 2× (within 10%) of the observations in the LMT. The spatial distributions of 10 

clouds at 215 hPa are relatively well-correlated with observations, noticeably better than those 11 

for the LMT clouds. Although both water vapor and clouds are better simulated in the LMT 12 

than in the UT, there is no apparent correlation between the model biases in clouds and water 13 

vapor. Numerical scores are used to compare different AR5 model performances in regards to 14 

spatial mean, spatial variance and spatial distribution of CWC and H2O at 100, 215, 600 and 15 

900 hPa pressure levels. Model performances at each pressure level are ranked according a 16 

simple average of all scores for that pressure level, and overall performances are ranked 17 

according to a simple average of the scores for all four pressure levels. 18 

19 
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1. Introduction 1 

IPCC projections of climate change currently rely on some 20 climate models’ 2 

simulations conducted at climate research centers worldwide. The outputs of these models 3 

consist of climate change indicators such as temperature, precipitation, clouds and water 4 

vapor. Clouds (both ice and liquid) and water vapor, which we consider here, are important 5 

modulators of climate and are involved in feedbacks that strongly affect global circulation and 6 

energy balance. Both ice and liquid clouds significantly affect the radiation budget through 7 

their shortwave albedo and longwave greenhouse effects [e.g. Randall and Tjemkes, 1991].  8 

Water vapor produces the most important positive feedback affecting climate change [e.g. 9 

Soden and Held, 2006]. Small errors or uncertainties in water vapor simulations can cause 10 

large errors or uncertainties in predicting climate change - even though current models 11 

generally agree on the sign and magnitude of water vapor feedback [Held and Soden, 2000; 12 

Soden and Held, 2006]. Convective parameterizations, and their uncertainties, make difficult 13 

the accurate model simulation of water vapor and clouds. Uncertainties in couplings between 14 

clouds and water vapor also add uncertainty to climate change predictions. Cloud feedback 15 

remains the largest source of uncertainty in predicting climate change [e.g. Cess et al., 1996; 16 

Soden and Held, 2006; Bony et al., 2006; Randall et al., 2007; Waliser et al., 2009].   17 

Improving the accuracy of cloud and water vapor simulations by climate models is thus of 18 

critical importance.  19 

Climate modelers have, over the past decade, undertaken tremendous efforts to improve 20 

model representation of clouds and water vapor, using a variety of observations to guide their 21 

work. ISCCP, ERBE, SSM/I, TRMM, NVAP and other satellite data for clouds and water 22 

vapor were used prior to 2002. The A-Train satellite constellation [L'Ecuyer and Jiang, 2010], 23 

which began in 2002, gives a significant improvement by providing co-located and near-24 
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simultaneous vertical profiles of clouds and water vapor and presents the first 3-dimensional 1 

simultaneous global observations of these important parameters. The A-Train observations 2 

place, more than previously possible, stringent constraints on model simulations of clouds and 3 

water vapor, and can help identify specific model outputs that either are modeled adequately 4 

or need improvement. 5 

We here - in the first of a series of papers to address the cloud and water vapor 6 

performance of climate models submitted to the Intergovernmental Panel for Climate Change 7 

(IPCC) Fifth Assessment Report (AR5) - compare multi-year means from A-Train 8 

observations with those from the AR5, and previous IPCC AR4, models. Global and zonal 9 

(tropical, mid-latitude, and high latitude) multi-year spatial means and spatial distributions are 10 

considered. Attention is given to vertical structure and the combined evaluation of cloud and 11 

water vapor performance. A scoring system is devised to quantitatively evaluate and rank the 12 

AR5 model performances, and this is applied to 30°N-30°S oceanic regions where the effects 13 

of diurnal variations are small. The organization of the paper is as follows: section 2 describes 14 

the AR4/AR5 models and their outputs used here; section 3 describes the A-Train datasets; 15 

section 4 compares model outputs, including differences between AR4 and AR5 model 16 

versions, and differences with the A-Train observations; and section 5 describes the model 17 

scoring system and gives performance results and model ranking based on this scoring system.  18 

We note that a number of other studies [Li et al., 2005; Su et al., 2006; Li et al., 2007; Waliser 19 

et al., 2009; Jiang et al., 2010; Su et al., 2011] have used A-Train cloud and water vapor data 20 

to evaluate the performance of AR4 global circulation models.  21 

2. AR4 and AR5 Climate models  22 

We analyzed output from 12 AR4 and 19 AR5 models that, at the time of our analyses, 23 

had been submitted to the Program for Climate Model Diagnosis and Inter-comparison 24 

(PCMDI) Earth System Grid (ESG) [see http://pcmdi3.llnl.gov/esgcet/] Coupled Model 25 
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Intercomparison Project (CMIP). These models are listed in Table 1, along with horizontal 1 

resolutions and references. Fifteen AR5 models are coupled atmosphere-ocean models, while 2 

four (CCCMA am4, GFDL am3, GISS e2-h, and UKMO hadgem2-a) are atmosphere models. 3 

For comparisons and evaluations, we re-grid all model data to a standard grid of 144×91 4 

(longitude×latitude) with 2.5° (longitude) × 2° (latitude) horizontal resolution and 40 pressure 5 

levels from the surface to 24 hPa, with intervals of 50 hPa in the middle troposphere and finer 6 

near the boundary layer and the tropopause. The model results then used for comparison with 7 

A-Train data are averages - using these gridded data - of multi-year monthly outputs from the 8 

“historical∗” runs (or AMIP runs for some atmospheric GCMs) for AR5 models and the 9 

“20c3m” runs for AR4 models, which are defined as simulations of recent past climate 10 

[Taylor et al. 2011]. The multi-year model averages are 20-year (1980-2000) mean when 11 

accessing progressing from AR4 to AR5 (section 4); or 25-year (1980-2005) mean when 12 

comparing between AR5 and A-Train (section 5). The end year is due to the end of 13 

“historical” forcing in AR4 and AR5 runs.  14 

The model output cloud parameters used in this study are clivi, clwvi, cli, and clw [See the 15 

PCMDI standard output document by K. Taylor, under “Requested Variables” at http://cmip-16 

pcmdi.llnl.gov/cmip5/output_req.html?submenuheader=2#req_list]. The parameter clivi is the 17 

vertically-integrated ice water path (IWP), clwvi is the vertically-integrated cloud water path 18 

(CWP) that includes both IWP and liquid water path (LWP), clw is the cloud liquid water 19 

mass mixing ratio, and cli is the cloud ice mixing ratio. This naming convention sometimes 20 

causes confusion since LWP is obtained by subtracting clivi from clwvi, but LWC and IWC 21 

are obtained directly from clw and cli. However, clwvi output from the AR4 models BCCR 22 

bcm2 and CSIRO mk3, and from the AR5 models CSIRO mk3.6 and IPSL cm5a, are for 23 

liquid water only. The parameter prw is vertically-integrated water vapor (i.e., precipitable 24 
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water), and hus is specific humidity. Table 2 summarizes the model outputs and acronyms 1 

used here. 2 

3. A-Train data  3 

NASA’s A-Train (Aqua, Aura, CloudSat and CALIPSO satellites) carries a suite of 4 

sensors that provide nearly-simultaneous and co-located measurements of multiple parameters 5 

that can be used for evaluating aspects of climate model performances. The measurements 6 

used in this study, summarized in Table 3 with their estimated uncertainties, are (a) water 7 

vapor (H2O) profiles from the Atmospheric Infrared Sounder (AIRS) onboard Aqua launched 8 

in 2002, (b) water vapor paths (WVP) from the Advanced Microwave Scanning Radiometer 9 

for Earth-Observing-System (AMSR-E) on Aqua, (c) liquid/ice water paths (LWP/IWP) from 10 

the Moderate-resolution Imaging Spectroradiometer (MODIS) on Aqua, (d) upper 11 

tropospheric H2O and ice water content (IWC) profiles from the Microwave Limb Sounder 12 

(MLS) on Aura launched in 2004, and (e) liquid water content (LWC) and IWC from 13 

CloudSat launched in 2006, and (f) IWC from CALIPSO also launched in 2006.   14 

AIRS version 5, Level 3 H2O product AIRX3STD is used (Olsen et al. 2007); it has 15 

spatial resolution of 50 km, but reported on 1°× 1° (longitude × latitude) grid. The useful 16 

altitude range is 1000 hPa to 300 hPa over ocean and 850 hPa to 300 hPa over land. The 17 

estimated uncertainty is 25% in the tropics, 30% at mid-latitudes, 50% at high latitudes and 18 

30% globally averaged. The AIRS WVP over land is computed as the vertical integration of 19 

water vapor content from 850 hPa to 300 hPa and the AIRS WVP over ocean is the vertical 20 

integration from the 1000 hPa to 300 hPa.  21 

AMSR-E Level 3 WVP data are used: the Version 5 ocean product (JAEA, 2005) 22 

downloaded from the Remote Sensing Systems website (http://www.remss.com) and reported on 23 

0.25°×0.25° (longitude×latitude) grid. The AMSR-E WVP is expected to be slightly larger 24 



 6 

over the land as AMSE-E measures the total water vapor content from the surface to the top 1 

of atmosphere. The AIRS science team has done a detailed comparison study of the WVP’s 2 

between AMES-E and AIRS over the ocean, and found that the difference is no more than 5%. 3 

MODIS daily IWP and LWP data are used: from the Collection 005 Level-3 MYD08-D3 4 

product [Hubanks et al., 2008] are generated by sub-sampling high resolution (1km), Level-2 5 

swath product (MYD06). These data are binned at 1° × 1° (latitude × longitude) resolution.  6 

We note that the MODIS original IWP and LWP values are for cloudy scenes only, which 7 

were computed for each grid box as total retrieved IWP or LWP divided by number of 8 

successful cloud retrievals.  For consistency with the gridded model data, we re-computed the 9 

MODIS original IWP and LWP to include both cloudy and clear sky scenes (by multiplying 10 

the original values by the cloud fractions for ice and liquid clouds, respectively). Thus the 11 

MODIS IWP and LWP used here are calculated as total retrieved IWP or LWP divided by 12 

number of both clear and successful cloud retrievals for each grid-box. The MODIS data 13 

uncertainties include the effects of baseline and particle size distribution (PSD) assumptions.  14 

In the absence of other information, we assume a factor of 2 as a realistic uncertainty estimate 15 

for MODIS IWP and LWP (Steven Platnick, personal communications), which is similar to 16 

the IWP and LWP uncertainties described below for MLS and CloudSat.  17 

For MLS we use version 2.2 Level 2 [Livesey et al., 2007] IWC and H2O datasets, whose 18 

validations are described by Read et al. [2007] and Wu et al. [2008], respectively. These data 19 

have vertical resolution of ~3-4 km, and horizontal resolutions of ~7 km across-track and 20 

~200-300 km along-track.  The useful altitude ranges are from 215 hPa to 83 hPa for IWC, 21 

and pressure < 316 hPa for H2O. The measurement uncertainties (including biases) for H2O 22 

are 20% (215 hPa) to 10% (100 hPa) at tropics and mid-latitudes, and ~50% at high latitude 23 

(>60°N/S) (Read et al. 2007). For IWC, there is a factor of 2 uncertainty (Wu et al., 2008), 24 



 7 

which is mostly scaling uncertainty associated with the microphysics assumptions, e.g. 1 

Particle Size Distribution (PSD) assumption, in the MLS forward model used for retrievals. 2 

The MLS WVP is computed as the vertical integration of MLS H2O from the 215 hPa to the 3 

top of atmosphere.  4 

CloudSat IWP, LWP, IWC, and LWC data from the 2B-CWC-RO (version r04) dataset, 5 

whose retrievals are described by Austin et al. [2009], are used. These data have horizontal 6 

resolution of ~2.5 km along-track and ~1.4 km cross-track. The vertical resolution is ~480 m, 7 

oversampled to 240 m.  One of the major uncertainties is that the retrieved IWC and LWC 8 

include some contributions from precipitating particles. Thus CloudSat IWC and LWC are 9 

likely overestimated.  Profiles where precipitation was detected are removed by using the 10 

CloudSat 2C-PRECIP-COLUMN product (Haynes et al., 2009), which flags precipitation 11 

(rain, snow, drizzle and graupel) for each IWC and LWC profile over the oceans. An average 12 

computed using no precipitation LWC or IWC profiles is called the noPcp value, while an 13 

average computed using all the IWC or LWC profiles is called the Total value. The noPcp 14 

values, as noted by Eliasson et al. (2011), inevitably have a low bias as all “floating” ice or 15 

liquid cloud particles associated with precipitation events are removed.  Nevertheless, the 16 

range between noPcp and Total provides a reasonable estimate of the lower and upper 17 

uncertainty bounds on CloudSat IWC and LWC. Validation studies by Heymsfield et al. 18 

[2008], Eriksson et al. [2008], and Wu et al. [2009], indicate that the CloudSat retrieval error 19 

is likely within ~50%. Similar to the MLS IWC, the CloudSat IWC and LWC also have 20 

uncertainty due to the PSD assumption.  CloudSat IWC/LWC estimated uncertainty is a factor 21 

of 2. Therefore, for the model comparisons, we use 0.5× the noPcp value as the low-end of 22 

the CloudSat uncertainty, and 2.0× the Total value as the high-end of the uncertainty. The 23 

cloud water content (CWC) is the sum of IWC and LWC. 24 



 8 

CALIPSO IWC data from version 3.1 Level 2 L2-LIDAR-CPRO datasets are used. These 1 

data have horizontal resolution of 5 km along-track, ~1 km cross-track, and vertical resolution 2 

of 500 m. The uncertainty of CALIPSO IWC - including scaling error due to PSD - is 3 

assumed to be a factor of 2 (Melody Avery, personal communications). 4 

All the A-Train datasets were put onto the same 144 (longtitude) × 91 (latitude) × 40 5 

(pressure) grid as done for the model outputs. The A-Train multi-year means used in 6 

comparisons with the models, and for calculating the various model performance scores are 7 

averages of these gridded data over the following time periods: 5 years (August 2006 to July 8 

2010) for CloudSat and CALIPSO; 8 years (October 2002 to September 2010) for AIRS and 9 

AMSR-E, 6 years (October 2002 to September 2008) for MODIS, and 7 years (September 10 

2004 to August 2011) for MLS. Although the A-Train time periods do not overlap with those 11 

of the model outputs, no significant trends in clouds and water vapor are found in the model 12 

simulations and both the model and A-Train averages are thus expected to represent “recent 13 

past climate” for which our analyses are intended.  14 

The A-Train satellites are sun-synchronous with equatorial crossings at ~1:30pm and 15 

~1:30am, and this can cause sampling biases for parameters (e.g, IWC) that have diurnal 16 

variation. To reduce the effects of diurnal sampling bias, when quantitatively scoring the 17 

model performances we use A-Train and model data only from the tropics and subtropics 18 

(30°N to 30°S) and only over oceanic regions – where diurnal variations are much less than 19 

over land. To estimate the amount of residual diurnal bias between model and A-Train means, 20 

we took daily 3-hour IWC data from 3 models (NCAR, GFDL, and GEOS5, used by Su et al. 21 

2011) and computed 30°N to 30°S oceanic means after interpolating to the MLS sampling 22 

times: differences with the model monthly means over tropical ocean were 1.5% for NCAR, 23 

0.9% for GFDL, and 0.1% for GEOS5 (compared to up to 200% differences for non-oceanic 24 
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land regions). We thus estimate that diurnal variation introduces a bias of less than 2% in our 1 

30°N to 30°S oceanic mean comparisons between model and observation, significantly 2 

smaller than the measurement uncertainties.  3 

4. Comparisons of model outputs and A-Train observations 4 

4.1 IWP, LWP, and WVP 5 

Figure 1 shows the global, tropical (30°S-30°N), mid-latitude (30°N/S-60°N/S) and high-6 

latitude (60°N/S-80°N/S) multi-year averages of IWP, LWP and WVP from AR4, AR5 and 7 

A-Train. As a major objective of this figure is to illustrate changes between the AR4 and AR5 8 

outputs, we include only results from models for which both AR4 and AR5 outputs were 9 

available. Grey horizontal bands in the IWP and IWC panels show the global mean ‘best 10 

estimate’ range - the range between CloudSat Total and noPcp global means. The factor of 2 11 

uncertainty limits for the global IWP and LWP best estimates are shown by dotted lines. Note 12 

that MODIS IWPs for all three zonal means, and the global mean, and are within the 13 

CloudSat grey band, supporting a ‘best-estimate’ interpretation for this band. However, 14 

MODIS measures IWP only in sunlight and its high-latitude mean does not include IWPs 15 

from the dryer polar winter. The MODIS global and mid-latitude mean LWPs are also within 16 

the grey band. The uncertainty limits of WVP global mean measurements, estimated as ±30% 17 

of the AIRS+MLS global mean WVP, are also shown by dotted lines. The AIRS+MLS WVPs 18 

are computed using the AIRS and MLS H2O measurements both over land (P ≤ 850 hPa) and 19 

over ocean. To facilitate the comparison between the models and AIRS+MLS, the model 20 

WVPs over land are also computed as the vertical integration of hus from 850 hPa to the top 21 

of atmosphere and the model WVPs over ocean are computed as the usual vertical integration 22 

from the surface to the top of atmosphere. The AMSR-E WVPs are the total water vapor 23 

content from the surface to the top of atmosphere, but over the ocean only. 24 
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4.1.1 IWP multi-year global and zonal means 1 

The most notable change in AR4 to AR5 model outputs is the ~50% reduction of mid-2 

latitude and high-latitude IWP from GISS e-h/e-r to e2-h/e2-r, seen in the top panel of Figure 3 

1. This reduction results from two modifications in the GISS model ice cloud microphysics: 4 

(1) increasing the rate of conversion from cloud ice to snow; and (2) removing the influence 5 

of convectively-generated snow on the glaciations of lower super-cooled liquid cloud layers.  6 

These modifications take effect mostly over the mid and high latitudes. The tropical mean 7 

IWP in GISS e2-h/e2-r is increased by ~15% compared to e-h/e-r. Although still ~30% higher 8 

than the upper end of the A-Train best-estimate range, both GISS AR5 models produce IWP 9 

within the observational uncertainty, a significant improvement from the AR4 models.    10 

Tropical IWP is notably increased from GFDL’s AR4 cm2 to its AR5 cm3 model that 11 

addresses cloud-aerosol interaction and atmospheric chemistry issues that were not treated in 12 

cm2. Cloud particle concentrations in cm2 were specified as constants, whereas in cm3 they 13 

are related to droplet activation that depends on aerosol properties and vertical velocity [Ming 14 

et al., 2006]. Also, interactive atmospheric chemistry is in cm3 instead of the specified 15 

chemical and aerosol concentrations in cm2. See Donner et al. [2011] for more information 16 

on the formulation of cm3 and the changes from cm2.  17 

The AR5 models CCCMA canesm2, MIROC miroc5, and UKMO hadgem2 also show 18 

increases of global IWP from their AR4 counterparts. For the CCCMA model, its AR5 19 

version differs substantially from the previous AR4 in its treatment of a number of physical 20 

processes. In particular, the CCCMA model now includes prognostic representations of 21 

stratiform clouds and aerosols and their direct and indirect effects on climate. In addition, 22 

treatments of radiative transfer, convection, and turbulent mixing were completely revised. 23 

However, exactly what caused the improvement between AR4 and AR5 is not known. The 24 

Japanese new AR5 model MIROC miroc5 employs an upgraded parameterization schemes. In 25 
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particular, treatment of clouds is substantially different from, and has larger degrees of the 1 

freedom than the previous AR4 model miroc3.2. For the UKMO hadgem2, a recent study by 2 

Martin et al. [2010] have shown significant improvements globally for the simulation of 3 

cloud amount and humidity compared to its predecessor hadgem1. This is particularly 4 

apparent in the tropics and results primarily from changes to the convection scheme. These 5 

changes include an “adaptive detrainment” parameterization [Derbyshire et al., 2011], 6 

exponential decay of convective cloud with a half-life of 2 hours, and removal of the depth 7 

criterion for shallow convection [Gregory and Rowntree, 1990].  8 

Reductions of IWP in AR5 compared to AR4 are seen in BCCR noresm1, INM cm4 and 9 

NCAR cam5. The NCAR cam5 IWP output include floating snow ice [Gettelman et al. 10 

2010a], but the model’s mean IWPs are notably even smaller than the CloudSat noPcp values. 11 

IWPs from CNRM, CSIRO and IPSL models show little change between AR4 and AR5. The 12 

IPSL cm5a model is very similar of the previous IPSL cm4 model except for improvements of 13 

horizontal and vertical resolutions [Dufresne et al. 2011], whereas the changes made in the 14 

CNRM’s and CSIRO’s AR5 models have little effect on their IWPs.  15 

Overall, of the 12 model pairs examined, 7 AR5 IWPs are within the CloudSat grey band, 16 

and 11 (all except INM cm4) are within the observational uncertainty limits. This is an 17 

improvement over AR4, where 6 models have IWPs within the grey band and 8 have IWPs 18 

within the uncertainty limits.  19 

4.1.2 LWP multi-year global and zonal means 20 

The middle panel of Figure 1 shows LWP, where increases from AR4 to AR5 model 21 

outputs are seen in BCCR noresm1, CCCMA canesm2, GISS e2-h and e2-r, INM cm4, and 22 

UKMO hadgem2. Reductions in LWPs from AR4 to AR5 are seen in CNRM cm5, CSIRO 23 

mk3.6, GFDL cm3, IPSL cm5a, NCAR cm5, and MIROC miroc5. Some of these changes in 24 

LWP are related to changes in cloud treatment in the model. For example, the CSIRO model 25 
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includes a simple treatment of sub-grid moisture variability, in which the width of sub-grid 1 

moisture distribution is parameterized via a prescribed critical relative humidity (RHc) for 2 

onset of cloud formation [Rotstayn, 1997]. In mk3, RHc was reduced between cloud base and 3 

top in convective columns when convection occurs. It has shown that such RHc reduction 4 

leads to a large increase of LWP, whereas IWP is relatively insensitive to RHc [Rotstayn, 5 

1999]. This feature was removed in mk3.6, in which the RHc is prescribed and no dependence 6 

on convection. This change explains the substantial decrease of LWP from mk3 to mk3.6, in 7 

conjunction with only a small change in IWP.  8 

Global mean LWPs within the grey band are produced by 4 AR5 models: GDFL cm3, 9 

INM cm4, NCAR cam5, and UKMO hadgem2. Eleven AR5 models (all except BCCR 10 

noresm) have LWPs within the observational uncertainty. In contrast, only 2 AR4 models 11 

(GISS e-h and e-r) give global mean LWPs within the grey band, and 11 AR4 models (all 12 

except MIROC miroc3.2) have LWPs within the observational uncertainty. 13 

4.1.3 WVP multi-year global and zonal means 14 

The lower panel of Figure 1 shows WVP. Model differences are within ~10%, and 15 

changes from AR4 to AR5 are less than 5%. The differences between model and AIRS+MLS 16 

observation are less than ~15%, well within the 30% observational uncertainty. The 17 

difference between AIRS+MLS and AMSR-E are mainly due to the fact that AMSR-E WVPs 18 

do not include data over land, whereas the AIRS+MLS (and all models’) WVPs are averaged 19 

using both data over oceans (pressure ≤ 1000 hPa) and data over lands (pressure ≤ 850 hPa). 20 

4.1.4 IWP multi-year mean spatial distributions  21 

Figure 2a shows the multi-year mean spatial distributions of IWP from the AR4 and AR5 22 

models and from the A-Train. The significant changes in IWP from the AR4 to AR5 models 23 

in comparison with the observations, are:  24 
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• BCCR (bcm2 to noresm): Overall reduction in IWP results in low bias compared to the 1 

observations. 2 

• CCCMA, cgcm3.1 to canesm2: Overall increase in IWP results in substantial improved 3 

agreement with observations. 4 

• CNRM, cm3 to cm5: Very little change. Both models have morphology very similar to 5 

CloudSat observations. Their IWP values between the CloudSat Total and CloudSat 6 

noPcp.    7 

• CSIRO, mk3 to CSIRO mk3.6: Slightly reduced IWP in the tropics results in a slight 8 

degradation in the agreement with observations. 9 

• GFDL, cm2 to cm3: IWP increase in the tropics but decrease in the northern 10 

hemispheric storm tracks and southern mid and high latitudes, gives better agreement 11 

with observations in the tropics, but a low bias in the mid and high latitudes. 12 

• GISS, e-r(h) to e2-r(h): Substantial reduction in mid and high latitude IWP, and increase 13 

in the tropics, result in better agreement with observations. 14 

• INM, cm3 to cm4: IWP decrease in the equatorial eastern Pacific but increase over the 15 

mid-latitude storm tracks. The global mean is not significantly changed, but there is 16 

noticeable degradation in agreement with observations over the inter-tropical 17 

convergence zone (ITCZ). 18 

• IPSL, cm4 to cm5a: Changes are very small, but IWP in the tropics is slightly reduced 19 

resulting in slightly improved agreement with observations there. 20 

• MIROC, miroc3.2 to miroc5: IWP increased slightly over both the tropics and mid-21 

latitudes, resulting slightly improved agreement with the observations. 22 

• NCAR, ccsm3 to cam5: IWP reduced slightly over the oceans, but increased over the 23 

landmasses. There is no obvious improvement compared to observations. 24 

• UKMO, hadgem1 to hadgem2-a: Slight increase in IWP in the tropics results in smaller 25 

low bias compared to observations; little change in the mid- and high latitudes. 26 

Of the 12 AR5 models examined, comparisons with the observations indicate that 7 27 

models show IWP improvements from AR4, 2 show little change, and 3 appear degraded.   28 

4.1.5 LWP multi-year mean spatial distributions  29 

Figure 2b shows the multi-year mean spatial distributions of LWP from the AR4 and AR5 30 

models and from the A-Train.  Comparisons with the CloudSat observations show that most 31 
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models have significant disagreement in the eastern Pacific subsidence region. Changes in 1 

LWP from AR4 to AR5 are: 2 

• BCCR, bcm2 to noresm: Large increase in LWP leads to significant overestimate 3 

compared to observations, and worse performance than its older AR4 version. 4 

• CCCMA, cgcm3.1 to canesm2: Large increase in LWP and the appearance of a “double 5 

ITCZ” in the equatorial Pacific result in poorer agreement with observations; 6 

• CNRM, cm3 to cm5: No significant change, but except slightly reduced IWC results in 7 

slightly improved agreement with the observations.  8 

• CSIRO, mk3 to mk3.6: Reduced LWP in mid-latitudes results in substantial 9 

improvement (in both amount and distribution) comparing to observations. Also notable 10 

is the improved simulation of clouds in the eastern Pacific subsidence region and the 11 

southern Indian Ocean west of Australia. 12 

• GFDL, cm2 to cm3: Spatial patterns are similar, but magnitude of LWP is reduced, 13 

resulting in better agreement with observations. The morphology of LWP in the GFDL 14 

models is generally similar to the observations, but stratiform clouds near the coast of 15 

Peru are not captured well, especially in cm3. 16 

• GISS, e-h(r) to e2-h(r): LWP increases, with more substantial increases in mid and high 17 

latitudes than in the tropics. Spatial distribution appears more zonal than the 18 

observations. It is not clear whether there is improvement compared to the observations. 19 

• INM, cm3 to cm4: Slightly increased LWP results in better agreement with observations. 20 

• MIROC, miroc3.2 to miroc5: Substantial reduction in LWP results in better agreement 21 

with observations. 22 

• NCAR, ccsm3 to cam5: Substantial reduction in LWP results in better agreement with 23 

observations. 24 

• UKMO, hadgem1 to hadgem2: Increased LWP results in better agreement with 25 

observations. 26 

Of the 12 models examined, 8 show LWP improvements from AR4 to AR5, 2 show 27 

changes but no notable improvements, while 2 appear degraded, compared with observations.   28 

4.1.6 WVP multi-year mean spatial distributions  29 

Figure 2c shows the multi-year mean spatial distributions of WVP from the AR4 and AR5 30 

models and from the A-Train. There is overall good agreement with the observations, and 31 
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model differences are small. Since the variability of WVP is dominated by lower-tropospheric 1 

water vapor, it is expected that the simulated lower tropospheric water vapor is similar among 2 

models, while large discrepancy may exist in the upper troposphere as we will discuss later. 3 

4.2 Vertical Profiles of CWC, IWC and H2O 4 

Figure 3a shows the multi-year mean vertical profiles of CWC and IWC (upper panels) 5 

and H2O (lower panels) from the 19 AR5 models and from the A-Train observations. The 6 

‘best estimated’ CWC values from the CloudSat observations are indicated by the grey band 7 

between the CloudSat noPcp and Total values. Observational uncertainty limits are indicated 8 

by the dotted lines. There is a large spread among model CWC in all three latitude bands and 9 

globally. At 300 hPa, for example, the global mean CWC from GISS e2-r is more than 200× 10 

larger than from INM cm3. The differences between MLS and CALIPSO IWC in the upper 11 

troposphere (P ≤ 215 hPa) are less than factor of 2, consistent with their estimated 12 

uncertainties. The modeled tropical CWCs range from ~3% to ~15× of the MLS observations 13 

in the upper troposphere. For mid-troposphere 700 hPa to 400 hPa, the modeled tropical 14 

CWCs are from ~30% to ~ 4× of the CloudSat Total. In lower troposphere, the modeled 15 

CWCs are ~ 40% to 2× of the CloudSat Total. 16 

H2O (lower panel of Figure 3a) differences among the models are within 20% in the mid- 17 

and lower troposphere, but more than 400% above ~200 hPa altitude. Model differences from 18 

the AIRS observations are small (< 10%) in the mid- and lower troposphere, but range from 19 

~1% to ~200% of the MLS observations at 100 hPa. 20 

Figure 3b shows the multi-year zonal means of CWC and H2O as a function of latitude 21 

and height. Some major points to be noted from this figure are: 22 

• The BCC csm1 and BCCR noresm model outputs are remarkably similar. This is not 23 

surprising since both models use similar cloud treatment. The cloud scheme in BCC 24 

csm1 is the same as that used in NCAR cam3 [Boville et al. 2006]. The atmospheric 25 
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component in the Norwegian Earth system model BCCR noresm is also modified from 1 

the NCAR model by updating the NCAR cam3’s aerosol-cloud scheme [Seland et al. 2 

2008; Kirkevåg et al. 2008; Hoose et al. 2009]. Both the BCC and BCCR models have 3 

large CWC amount in mid-layer clouds in the tropics, and low-level clouds at mid and 4 

high latitudes. However, their ice clouds have smaller IWC than CloudSat Total.   5 

• The CCCMA models, am4 and canesm2, have nearly identical outputs with lower 6 

tropospheric CWC notably greater than the observations and have larger amounts of 7 

lower and mid-latitude CWC than the observations.  8 

• The French CNRM cm5 and Australian CSIRO mk3.6 models have mid-latitude CWC 9 

similar to CCCMA models. However, the CNRM model has larger CWC than the 10 

CSIRO model in the tropics. The later has much smaller high-altitude tropical CWC 11 

compared to CloudSat Total, which may due to the exclusion of precipitation 12 

calculation of CWC in CSIRO mk3.6. 13 

• The GFDL models, am3 and cm3, have the highest cloud top heights, which extend 14 

above 100 hPa, which is higher than the CloudSat observation. The two models also 15 

have substantial mid-tropospheric clouds (e.g. at ~600 hPa) near the tropics, which is 16 

also higher than the observation in terms of CWC amount. 17 

• The GISS models, e2-h and e2-r, have morphology similar to CloudSat Total, but have 18 

larger amounts of IWC for the ice clouds.  19 

• INM cm4 model has very small amounts of CWC relative to the observations. 20 

• IPSL cm5a model produces large CWCs for mid-level and low level clouds at mid-21 

latitudes. It simulates many clouds but very little high clouds in the tropics, compared 22 

with observations. 23 

• NCAR cam5 has many low level clouds and very weak mid-level and high clouds, 24 

compared with observations. 25 

• For the Japanese models, MIROC miroc4h and MRI cgcm3 have similar mid-latitude 26 

CWCs. They both have more CWC at mid-altitude and less CWC at high altitude, 27 

compared to CloudSat observations. MIROC miroc5 has smaller CWC at mid- and 28 

high altitudes compared to miroc4h and MRI cgcm3. The miroc5 model also appears 29 

to have substantial more CWCs at the northern subtropics than the southern subtropics.  30 

• The three UKMO models, hadgem2-a, hadgem2-cc, and hadgem2-es, are very similar. 31 

Compared with observations, they produce too much mid-latitude CWC in the mid-32 
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and lower troposphere, but too little CWC in the tropical upper tropospheric deep 1 

convective regions. 2 

• All models produce similar zonal mean distributions of water vapor. The major 3 

differences with observations are in the upper troposphere where, for example, 4 

MIROC miroc5 produces less than 1/10 the amount of H2O observed by MLS. 5 

5. Quantitative evaluation of model performances 6 

In this section we quantify the differences between model and A-Train multi-year means, 7 

and score the model performances compared to the observations. Only 30°S-30°N oceanic 8 

regions are considered in order to reduce diurnal sampling biases. It is in the tropics and 9 

subtropics that climate model performance is most critical for future climate prediction. 10 

5.1 The scoring system 11 

Model performance is evaluated with a system that scores how well each model multi-12 

year mean reproduces the A-Train multi-year mean in terms of (1) spatial means, (2) spatial 13 

variances, and (3) spatial distributions. Our scoring system follows that of Douglass et al. 14 

[1999], Waugh and Eyring [2008], and Gettelman et al. [2010b], but with additional 15 

considerations of observational uncertainties.  16 

We define the spatial mean scores Gm for IWC, LWC and H2O as  17 
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where m denotes the 30N-30S oceanic spatial mean, mdl denotes model value, obs denotes 20 

observational value, and obsm,ε  is the fractional uncertainty of the observed spatial mean.  The 21 

observed IWC and LWC spatial means have a factor of 2 uncertainty; hence LWCIWC
obsm
,

,ε = 2.  The 22 

H2O observational uncertainties OH
obsm
2
,ε  are 0.1 at 100 hPa, 0.2 at 215 hPa, and 0.25 at 600 and 23 
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900 hPa.  The scaling factor ng is chosen to be 3, except for LWC at 900hPa where ng = 4 is 1 

chosen to account for a greater uncertainty (50% of noPcp value) in LWC there.  Due to the 2 

large range of values, the difference in logarithms is used for IWC and LWC.   In this grading 3 

system, for example, a zero Gm score means: (1) for H2O, the model-observation difference is 4 

greater than 3× the observational uncertainty, and (2) for IWC/LWC, the model value is either 5 

8× greater (16× for 900hPa) or less than 1/8 (1/16 for 900hPa) the observational value. 6 

Similarly, we define the spatial variance scores Gv as: 7 
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where mdlσ  and obsσ  are the standard deviations from models and observations, respectively.  10 

The uncertainty of the observed spatial variance, obs,vε , is the same as for obsm,ε  discussed 11 

above and the sameng values are also used here.  12 

For the spatial distribution performance, we simply use spatial correlations between model 13 

and observation as the scoring system: 14 

                           
G

c
=max 0, C

mdl,obs
!" #$ ,                             (5) 15 

where C
mdl, obs

 is the spatial correlation between the multi-year mean from a model and the 16 

multi-year mean from the A-Train. 17 

5.2 Bi-variate metrics for H2O and LWC/IWC 18 

As water H2O is strongly coupled with LWC/IWC, it is informative to simultaneously 19 

analyze the model performances for H2O and LWC/IWC. This is particularly useful in the 20 

tropical tropopause layer (TTL) where the sum of IWC and H2O is nearly constant  [e.g. Flury 21 
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et al. 2011]. We thus use bi-variate metrics (BVC) in the following sections to simultaneously 1 

evaluate the model performances for H2O and for LWC.  2 

5.3 Model performances in regards to spatial means  3 

Figure 4 shows scatter plots of H2O versus IWC at 100 hPa and 215 hPa, and H2O versus 4 

LWC at 600 and 900 hPa. Black dots, and horizontal and vertical lines, show the A-Train 5 

multi-year means; the grey area indicates the observational uncertainties. Colored dots/cycles 6 

are the multi-year means from the AR5 various models. Black open-cycles represent the 7 

“multi-model mean”, which is a “virtual model” constructed by averaging all 19 models’ 8 

outputs. Tables 4a and 4b give numerical values for the spatial means, and for the resulting 9 

performance scores discussed below.    10 

100 hPa IWC and H2O spatial mean performances: At 100 hPa, the GISS e2-r model 11 

receives the highest IWC score ( IWC
mG = 0.90), with BCCR noresm second (0.86) and GISS 12 

e2-h third (0.70). Next are MIROC miroc4h (0.64), CSIRO mk3.6 (0.45), IPSL cm5a (0.43), 13 

MRI cgcm3 (0.22), BCC csm1 (0.21) and UKMO hadgem2-a (0.05). The other 10 models 14 

received IWC
mG scores of 0.0. For H2O, the GFDL am3 model gives best performance at 100 15 

hPa and receives the maximum possible score of OH
mG 2 = 1.0. Next are BCCR noresm (0.97), 16 

CCCMA canesm2 (0.92), UKMO hadgem2-cc (0.91), GFDL cm3 (0.84), CCCMA am4 17 

(0.78), and NCAR cam5 (0.65). Models receiving OH
mG 2 scores in the range 0.31-0.57 are 18 

UKMO hadgem2-es (0.57), BCC csm1 (0.47), UKMO hadgem2-a (0.42) and MIRCO 19 

miroc4h (0.31). The remaining seven models receive OH
mG 2 = 0.0.   20 

215 hPa IWC and H2O spatial mean performances: At 215 hPa, the best overall 21 

performance is by the three UKMO models as well as CNRM cm5, which give both IWC and 22 

H2O approximately within the measurement uncertainties, earning them G
m

iwc  scores in the 23 
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0.62-0.77 range for 215 hPa IWC and G
m

h2o  scores in the 0.79-0.92 range for 215 hPa H2O. 1 

BCC and INM models produce accurate 215 hPa H2O, with OH
mG 2 = 0.99 and 1.0, respectively, 2 

but produce much too little 215 hPa IWC (far outside the observational uncertainty) giving 3 

them low scores of IWC
mG = 0.21 and 0.0, respectively. The two CCCMA models and the IPSL 4 

model give the best agreement with observed 215 hPa IWC ( IWC
mG  ≥ 0.98) but produce far too 5 

much 215 hPa H2O ( OH
mG 2  = 0.0 for CCCMA models and 0.33 for IPSL cm5a). MIROC 6 

miroc4h and MRI cgcm3 also receive good scores ( IWC
mG =0.88) for 215 hPa IWC, but 7 

produce too much 215 H2O ( OH
mG 2 < 0.14). MIROC miroc5 has relatively good performance 8 

( IWC
mG =0.67 and OH

mG 2 =0.66) compared to MIROC miroc4h. Both GFDL and both GISS 9 

models, as well as CSIRO mk3.6 also give far too much 215 hPa H2O ( OH
mG 2  in the 0.0-0.16 10 

range), and too much 215 hPa IWC ( IWC
mG ≤ 0.5). The NCAR model produces 215 hPa IWC 11 

within the observational uncertainty ( IWC
mG  = 0.73), but gives 215 hPa H2O slightly outside 12 

the uncertainty ( OH
mG 2 = 0.55). The BCCR noresm gives 215 hPa IWC slightly outside the 13 

uncertainty ( IWC
mG  = 57), but its 215 hPa H2O is further outside the uncertainty ( OH

mG 2 = 0.44). 14 

600 hPa LWC and H2O spatial mean performances: At 600 hPa, model LWC ranges 15 

from 0.9 mg/m3 (NCAR cam5) to 10.9 mg/m3 (MRI cgcm3), compared to the Cloudsat value 16 

of 2.8 mg/m3 (with uncertainty range from 1.3 to 5.6 mg/m3). The three UKMO models and 17 

the Australian model CSIRO mk3.6 all receive excellent LWC
mG  scores (0.97 for hadgem2-a 18 

and hadgem2-cc, 0.99 for hadgem2-es, and 1.0 for CSIRO mk3.6). GISS and INM models 19 

receive good IWC
mG  scores (0.70s). The two CCCMA models, GFDL models, and IPSL cm5a 20 

have IWC
mG  scores in the 0.60s. Other models have LWC

mG  in the 0.40s or below. All models 21 
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perform well for 600 hPa H2O, with differences from observations less than 20% - within the 1 

25% observational uncertainty. All models receive OH
mG 2  scores higher than 0.6 at 600 hPa.   2 

900 hPa LWC and H2O spatial mean performances: At 900 hPa, model LWCs range 3 

from 4.53 mg/m3 (INM cm4) to 48.2 mg/m3 (MIROC miroc4h) and are all within the 4 

CloudSat observational uncertainty. Scores are LWC
mG  > 0.7 or better, except for INM cm4 5 

with LWC
mG  = 0.39, due to its LWC being smaller than the CloudSat noPcp value. All models 6 

perform well for 900 hPa H2O, with scores OH
mG 2

 > 0.7 or better. 7 

In Figure 4, the “multi-model mean” at 900 hPa falls within the grey area, and it slightly 8 

over produces IWC and thus locates just outside the edge of the grey area at 600 hPa. At 9 

upper troposphere, the “multi-model mean” has excessive H2O at 215 hPa and too large IWC 10 

at 100 hPa. As most models have high bias of 215 hPa H2O, the “multi-model mean” is also 11 

biased high.  At 100 hPa, although most models have low bias of IWC, the extremely large 12 

values of IWC from the two GDFL models make the “multi-model mean” IWC biased higher 13 

than the observation.   14 

It is worth noting that there is no apparent correlation between model scores for 15 

IWC/LWC and for H2O. Some models (e.g. CCCMA am4/canesm2 at 215hPa) simulate 16 

IWC/LWC extremely well compared to the observations, but give H2O that is substantially 17 

different from observations. Other models (e.g. GFDL am3/cm3 at 100 hPa) simulate H2O 18 

extremely well, but give IWC/LWC that is significantly different from the observations. This 19 

points to the need for developing more accurate and consistent model representations for 20 

physical processes jointly affecting clouds and water vapor.  21 

5.4 Model performances in regards to spatial variations 22 

We now examine the degree to which the spatial variations in the multi-year means from 23 

the AR5 models reproduce the spatial variations in the multi-year means from the A-Train 24 
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observations over 30ºS-30ºN oceanic regions. Tables 5a and 5b give numerical values for the 1 

spatial variance (standard deviation) and the resulting spatial variance scores. Tables 6a and 2 

6b give numerical values for the spatial correlation and the resulting spatial correlation scores. 3 

Subsections below discuss the model performances at each of the 4 vertical levels. To 4 

succinctly illustrate the performances we use Taylor diagrams [Taylor 2001] in which spatial 5 

correlation, centered root-mean-square-differences, and amplitudes of spatial variations 6 

(represented by their standard deviations) are displayed simultaneously in a compact format. 7 

It should be noted that the means of the fields are removed before computing the statistics for 8 

the Taylor diagrams - so these diagrams do not provide information about the mean 9 

differences, but the mean differences are quantified in section 5.3 above.  10 

Figure 5 gives Taylor diagrams for H2O at 100, 215, 600 and 900 hPa, for IWC at 100 and 11 

215 hPa, and for LWC at 600 and 900 hPa. Results are shown for all the 19 AR5 models that 12 

produce vertical profiles of H2O, IWC and LWC. The Taylor diagram position of the symbol 13 

for each model quantifies how closely that model simulates the variation in the observed field.  14 

The centered root-mean-square difference between the modeled and observed field is 15 

proportional to the distance (green contours) between the point for that model and the point at 16 

unity value on the horizontal axis (black dot representing the normalized standard deviation of 17 

the observed field). The standard deviation of the model field itself is proportional to the 18 

radial distance between the point for that model and the origin. The coefficient of correlation 19 

between the modeled and observed fields is non-linearly related to the clockwise angle from 20 

the vertical axis, with correlation coefficient values indicated along the outer arc. It should be 21 

noted that the reason this 2-dimensional figure can represent these three different statistics 22 

simultaneously is that the three statistics are not independent of each other.  23 

24 
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5.4.1 Model spatial variation performances at 100 hPa 1 

Of the four vertical levels examined, differences among models - and differences between 2 

models and observation - have the largest spread at 100 hPa. 3 

100 hPa IWC spatial variation performance: Best model performance for 100 hPa IWC 4 

spatial variance is by BCCR noresm (0.86 score, 0.74 standard deviation), GISS e2-h (0.72 5 

score, 1.77 standard deviation), and MIROC miroc4h (0.71 score, 1.83 standard deviation). 6 

Best performance for spatial correlation is by MIROC microc4h (0.85 score), NCAR cam5 7 

(0.84 score), CCCMA am4 (0.83 score), and GFDL am3 (0.82 score). The two GISS models 8 

produce spatial correlations with observations of ~0.25 and receive IWC
cG  = scores of ~0.25. 9 

BCCR noresm and IPSL cm5a give similar spatial correlations (~0.6) and receive ~0.6 10 

IWC
cG scores. IPSL cm5a, however, produces standard deviation of only 0.33 and receives 0.47 11 

IWCGv score. Most other models also give correlations of ~0.6-0.7, but produce even smaller 12 

standard deviations (< 0.2) and receive IWCGv  scores in the 0.0-0.28 range. GFDL am3/cm3 13 

have the largest RMS differences (27×/16×) with observations, and the most discrepant 14 

standard deviations (28×/17×) and receive 0.0 for IWCGv  score; their spatial correlation 15 

performance, however, is good ( IWC
cG scores 0.82/0.75). With 15 of the 18 models scoring 16 

poorly for spatial variance ( IWCGv ≤ 0.5), it is clear that simulation of tropical tropopause layer 17 

cloud is a challenging area.   18 

100 hPa H2O spatial variation performance:  BCCR noresm, as it did for 100 hPa IWC, 19 

produces spatial variance (1.06 standard deviation) in closest agreement with the MLS 20 

observation and receives score OHG 2
v = 0.81. The second and third closest agreements with 21 

MLS observation are achieved by UKNO hadgem2-cc and CNRM cm5, receiving scores 22 

OHG 2
v = 0.73 and 0.62, respectively. All other models receive OHG 2

v  scores of 0.1 or less, with 23 
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IPSL cm5a producing too little spatial variation and all other models producing too much. It 1 

should be noted that, because the MLS uncertainty here is only 10%, any model producing 2 

100 hPa H2O spatial standard deviation that differs from the MLS value by ≥ 30% receives 3 

OHG 2
v  = 0.0. For spatial correlation, BCCR noresm produces the smallest positive correlation 4 

(0.038) and receives OH
cG 2  = 0.04. CNRM cm5 and UKMO hadgem2-cc receive good 5 

OH
cG 2 scores of 0.81 and 0.87, respectively. BCC csm1, GFDL am3/cm3, MIROC miroc5, 6 

NCAR cam5, and UKMO hadgem2-a/hadgem2-es also have good spatial correlation with 7 

MLS 100 hPa H2O ( OH
cG 2  scores of ~0.70s and 0.80s) - and also have small RMS differences 8 

- but, as noted above, they all receive very low spatial variance scores. CCCMA am4/canesm2 9 

and GISS e2-h/e2-r give negative spatial correlations with the observation and therefore 10 

receive OH
cG 2  = 0.0 score. All other models receive correlation scores in the 0.40s-0.50s range. 11 

5.4.2 Model spatial variation performances at 215 hPa 12 

215 hPa IWC spatial variation performances: At 215 hPa, CCCMA am4/canesm2, 13 

IPSL cm5a, and MIROC microc4h models produce IWC spatial variances near that observed 14 

by MLS, and receive IWCGv scores of 0.93/0.96/0.97, 0.90 and 0.95, respectively. Most other 15 

models produce less spatial variance than observed, and most of these receive IWCGv scores in 16 

the ~0.5-0.8 range - but BCC csm1, BCCR noresm, and INM cm4 produce spatial variance 17 

that is only 0.09, 0.24, and 0.02, respectively, of that observed and receive respective scores 18 

of only 0.0, 0.32, and 0.0. Four models produce spatial variance substantially larger than 19 

observed: GFDL am3/cm3 produce 2.9/2.6× more (and receive scores 0.49/0.55), GISS e2-20 

h/e2-r produce 10.1/10.7× more (and receive 0.0 scores) and have the largest RMS differences 21 

(9.5/10) with the observations. In regards to spatial correlation, 18 of the 19 models receive 22 

IWC
cG  scores in the 0.60s-0.90s range; UKMO hadgem2-cc/hadgem2-es and GFDL am3 have 23 
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the best (and almost equal) performance in this category. INM cm4 produces relatively low 1 

correlation of 0.49 and receives IWC
cG = 0.49 score. The high spatial correlation scores of most 2 

models for 215 hPa IWC indicate that most produce reasonably-accurate locations for deep 3 

convection. But the diversity of spatial variance scores indicates discrepancies among models 4 

(and with observations) on the intensity of this convection. Note that the 215 hPa IWC spatial 5 

variances from each model are closely related to the corresponding means (Figure 4a and 6 

Table 4a), and that both are indicative of convection intensity. 7 

215 hPa H2O spatial variation performances: GISS e2-r produces 215 hPa H2O spatial 8 

variance closest to that observed by MLS and receives OHG 2
v = 0.99 score. BCC csm1 9 

produces too little variance (0.48 standard deviation; 0.13 score), the two CCCMA models 10 

am4/canesm2 produce too much variance (1.36/1.46 standard deviation; 0.40/0.24 scores), 11 

and CSIRO mk3.6 and GFDL am3 also produce too much variance (1.43 standard deviation, 12 

0.29 score; 1.54 standard deviation, 0.10 score; respectively). UKMO hadgem2-cc has too 13 

little spatial variance (0.64 standard deviation, 0.41 score). Most other models receive OHG 2
v  14 

scores spread in the 0.5-0.9 range. All models produce 215 hPa H2O good spatial correlations 15 

in the 0.74-0.94 range, another indication that most models produce reasonably-accurate 16 

locations for deep convection. 17 

5.4.3 Model spatial variation performances at 600 hPa 18 

600 hPa LWC spatial variation performances. At 600 hPa, the best performance for 19 

LWC spatial variance is by CSIRO mk3.6 and the three UKMO models with standard 20 

deviations (~1) very close to those observed and small (~0.8) RMS differences; they receive 21 

spatial variance scores of LWCGv = 0.96 for CSIRO mk3.6, 0.97 for UKMO hadgem2-a, 1.0 for 22 

UKMO hadgem2-cc, and 0.99 for UKMO hadgem2-es. The spatial correlations for these 23 

models are in the 0.60s-0.70s range. Good spatial correlation performance is also had by BCC 24 
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csm1, BCCR noresm, CNRM cm5, GFDL am3/cm3, IPSL cm5a, MRI cgcm3, and NIES 1 

miroc4h - with LWC
cG scores above 0.6. GFDL am3 has the highest spatial correlation (0.81). 2 

The GFDL am3/cm3 standard deviations, however, are about twice that observed, and they 3 

receive LWCGv scores of 064/0.68. BCC csm1, BCCR noresm, CCCMA am4/canesm2, CNRM 4 

cm5, GISS e2-h/e2-r, IPSL cm5a, MIROC microc4h/miroc5, and MRI cgcm3 have LWC 5 

standard deviations about 3× to 4× than observed, giving them standard deviation scores in 6 

the 0.30s-0.40s range. NCAR cam5 and INM cm4 have moderate correlation (with LWC
cG  7 

scores in the 0.50s), relatively small RMS differences (~0.8), with spatial variance about half 8 

that observed (scores LWCGv of 0.62 and 0.74, respectively). GISS e2-h and e2-r produce 9 

weakly negative correlations (−0.029 and −0.036 respectively), and receive LWC
cG = 0.0. The 10 

two CCCMA models am4/canems2 produce relatively low correlations, and receive 0.37 11 

LWC
cG score. Overall, 11 of 19 the models receive low (< 0.5) LWC spatial variance scores, 12 

and 6 models receive low (< 0.6) LWC spatial correlation scores. Improvements in the 13 

representation of mid-level clouds are certainly needed in many models.   14 

600 hPa H20 spatial variation performances: At 600 hPa, all models perform 15 

reasonably well for H2O, with spatial correlations above 0.8 and standard deviations close to 16 

that observed. All models receive OH
cG 2  correlation scores in the 0.80s or 0.90s, with highest 17 

received by NCAR cam5 (0.97) and GFDL am3 (0.98). Highest OHG 2
v  variance scores are 18 

received by UKMO hadgem2-a (0.99), MRI cgcm3 (0.98) and GFDL cm3 (0.98). Most 19 

models receive OHG 2
v  scores of 0.7-0.9, with slightly lower received by BCC csm1 (0.56), 20 

GFDL am3 (0.65), and GISS e2-h (0.67).  21 

22 
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5.4.4 Model spatial variation performances at 900 hPa 1 

900 hPa LWC spatial variation performances: At 900 hPa, as seen from the bottom left 2 

panel of Figure 5a, all models produce less LWC spatial variation than observed by CloudSat.  3 

CSIRO mk3.6, CCCMA canesm and MIROC miroc4h are closest to the observed amount of 4 

spatial variance and receive scores LWCGv  in the 0.90s. The spatial patterns for the CCCMA 5 

and MIROC models, however, have relatively low correlation observed and receive spatial 6 

correlation scores of LWC
cG  < 0.5, while the correlation score for CSIRO mk3.6 is the highest 7 

at 0.75. The INM model produces least spatial variance and receives the low score LWCGv  = 8 

0.07; it and there other models - BCC csm1, CNRM cm5, and MRI cgcm3 - give very low 9 

spatial correlation with observation, and receive scores in 0.10s-0.20s. The GFDL am3 model 10 

has the second largest spatial correlation and receives LWC
cG  = 0.73. All models have RMS 11 

differences with observations (normalized to the standard deviation in the observed field) 12 

between ~0.75 and ~1.0.   13 

900 hPa H2O spatial variation performances:  For 900 hPa H2O, all models have RMS 14 

differences with observations of 0.2-0.4, correlations of 0.89-0.96, and variances that are – at 15 

most - only slightly different. Their scores for standard deviation and correlation are at OHG 2
v ≥ 16 

0.74 and OH
cG 2 ≥ 0.89. That the models reproduce boundary layer H2O distribution well is not 17 

surprising, and reflects the tight constraint on boundary layer H2O by sea surface temperature 18 

(SST), which is specified or closely matched to the observed SST. 19 

As the “multi-model mean” inherently smooths out individual models’ spatial variations, 20 

it is not surprising the spatial variances of the “multi-model mean” are generally closer to the 21 

observations than individual models. The spatial correlations of “multi-model mean” are also 22 

the highest among all models. 23 
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5.5 Overall summary of model performance scores  1 

Figure 6 gives an overall summary of all 19 models’ performances in a color-coded 2 

display of each model’s spatial mean, spatial variance and spatial correlation scores for all 3 

three parameters (H2O, IWC and LWC) and all four pressure levels examined here. Although 4 

the score values are not directly comparable between IWC/LWC (clouds) and H2O (water 5 

vapor), we find that – at all 4 pressure levels - most models simulate water vapor better than 6 

clouds. All models receive poorer scores in the tropical tropopause layer and upper 7 

troposphere than they do in the middle troposphere and boundary layer. The model H2O and 8 

IWC at 100 and 215 hPa vary greatly from model to model, indicating the large differences 9 

(and, thus, overall uncertainty) in the various parameterizations and microphysics for 10 

processes affecting high-altitude clouds.  11 

For spatial means, most models have better scores in both LWC and H2O at 900 hPa 12 

(boundary layer) and 600 hPa (middle troposphere) than at 215 (upper troposphere) and 100 13 

hPa (tropical tropopause layer). The scores for LWC at 215 and 100 hPa are also generally 14 

better than those for IWC at 215 and 100 hPa. Besides the “multi-model mean”, the three 15 

UKMO models appear best when considering spatial mean performance over all vertical 16 

levels, while the BCCR model appears best in the upper troposphere.  17 

For spatial variability, it is clear that models generally simulate 600 and 900 hPa H2O 18 

(water vapor) better than LWC (clouds). Most models do not well simulate the observed 19 

variability of IWC (clouds) at 215 and 100 hPa. An interesting result is the better scores for 20 

correlation than for variance at 215 and 100 hPa, indicating that models generally simulate 21 

upper tropospheric cloud and water vapor spatial patterns (which are connected to regions of 22 

deep convection) better than they simulate the amount of spatial variation. Spatial patterns of 23 

low and mid clouds are not universally well simulated. 24 
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The “multi-model mean” exhibits relatively superior performance in all aspects of metrics 1 

in Figure 6, except its score for the 215 hPa mean H2O is below 0.5. The low score for 215 2 

hPa H2O reflects the fact that most models have high bias of 215 hPa spatial mean H2O 3 

compared to the observation. On the other hand, both high and low biases exist for other 4 

quantities in the models, thus the “multi-model mean” effectively averages out the biases and 5 

achieve a better performance than many individual models.   6 

5.6 Overall scores and rankings  7 

To obtain an overall performance score for each model at each pressure level, we simply 8 

average its scores for all three variables (H2O, IWC, LWC), and all three categories (spatial 9 

mean, spatial variance, spatial correlation) at each pressure level. Table 7 gives these overall 10 

‘pressure-level’ scores, and performance rankings in terms of this score, for each model. To 11 

obtain a single overall performance score for each model, we simply average the overall 12 

scores for the four pressure levels. This resulting overall score for each model is given in 13 

Table 8, along with each model’s rank in terms of this score.  14 

UKMO hadgem2-a/hadgem2-cc models tie for the highest overall score (0.73) and 15 

UKMO hadgem2-es has the second-highest score (0.71). Two of the UKMO models 16 

hadgem2-a/hadgen2-es also have the highest 600 hPa score (0.91), and another UKMO model 17 

hadgem2-cc ranked second best at both 100 hPa and 600 hPa. BCCR noresm has the third-18 

highest overall score (0.70) and the highest 100 hPa score (0.69). In fourth place and fifth 19 

place are MIROC mioc4h (0.69) and IPSL cm5a (0.66), of which, IPSL cm5a also has the 20 

highest 215 hPa score (0.79). Tied at sixth highest overall score are CSIRO mk3.6 (0.65) and 21 

NCAR cam5 (0.65), with CSIRO having the highest 900hPa score (0.92). Tied at seventh are 22 

GFDL am3 and cm3 (0.64), with GFDL am3 also having the second highest 900 hPa score 23 

(0.86). Also tied at eighth place in overall score are CCCMA am4 and MIROC miroc5 (0.62), 24 

and both CCCMA canesm2 and CNRM cm5 follow closely at ninth (0.61). BCC csm1, GISS 25 
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e2-h/e2-r, INM cm4 and MRI cgcm3 received relatively lower overall scores although some 1 

aspects of their performances are quite good; for example, BCC csm1 performs relatively 2 

good at 100 hPa comparing to most other models, GISS e2-h/e2-r receive good 900 hPa score, 3 

INM cm4 performs well at 600 hPa, and MRI receives relatively good 215 hPa score. 4 

Interestingly, the overall score for the “multi-model mean” turns out to be the best (0.78) 5 

among all models. This may be coincidental, but it is comforting as the use of multi-model 6 

ensembles in climate projections is a common practice and the “multi-model mean” is 7 

generally perceived as closer to the “truth” than any single model alone, as found in previous 8 

model evaluation studies [e.g. Gleckler et al. 2008]. 9 

6. Conclusions 10 

Using A-Train observations, we have assessed the multi-year mean simulations of cloud 11 

and water vapor by IPCC AR4 and AR5 models. For clouds, apparent improvements in model 12 

simulations of IWP are identified in 7 models (CCCMA am4 and canesm2, GFDL cm3, GISS 13 

e2-h and e2-r, IPSL cm5a and MIROC miroc5). For LWP, improvements are found in 8 AR5 14 

models (CNRM cm5, CSIRO mk3.6, GFDL cm3, INM cm4, NCAR cam5, MIROC miroc5, 15 

UKMO hadgem1 and hadgem2), comparing to their previous AR4 versions. For water vapor, 16 

changes in WVP from AR4 to AR5 are relatively insignificant.  17 

We also examined vertical structure of CWC and H2O produced by 19 AR5 models. The 18 

largest spread among models and their differences from A-train observations are at upper 19 

troposphere level.   20 

We develop a grading scheme to quantitatively evaluate model performance in simulating 21 

clouds and water vapors at different vertical levels (from boundary layer to tropopause) in 22 

terms of spatial mean, correlation and standard deviation. Overall, we find water vapor is 23 

generally better simulated than clouds. Boundary layer water vapor is the best simulated, 24 

because of the strong constraint on boundary layer water vapor by SST. Tropopause layer 25 
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water vapor is very poorly represented. For spatial mean, upper troposphere ice cloud is worse 1 

simulated than lower and middle troposphere liquid cloud. For spatial correlation, model 2 

simulated clouds and water vapor at 215 hPa are better represented than boundary layer 3 

clouds. Spatial variances of clouds at all levels are poorly simulated, compared to A-Train 4 

observations. 5 

Considering all grades equally weighted, the overall average grades of all models show 6 

that the UKMO hadgem2-a and hadgem2-cc perform the best, followed by UKMO hadgem2-7 

es, BCCR noresm, MIROC miroc4h, IPSL cm5a, tied CSIRO mk3.6 and NCAR cam5, tied 8 

GFDL am4/cm4, tied CCCMA am4 and MIROC miroc5, and tied CCCMA canesm2 and 9 

CNRM cm5, etc. The “multi-model mean” also has the best overall performance.   10 

We recognize that our scoring scheme is simplified; it nevertheless provides a quantitative 11 

measure of relative skills of current models in simulating clouds and water vapor.  12 
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Table 1:  AR5 and AR4 models used in this study  

Modeling Center AR4 Model 
(‘20c3m’ run) 

AR5 Model 
(‘historical’ or 

AMIP run) 

Type 
(AR5) 

Resolution 
(AR5) 

Key Reference 
(AR5) 

Beijing Climate Center, China BCC - csm1.1 AOGCM 2.8125°×2.8125°, 
L26 

Wu et al. [2010] 
Wu et al. [2011] 

Bjerknes Centre for Climate 
Research, Norway / Norwegian 
Climate Center, Norway 

1BCCR-
NCC 

bcm2 noresm AOGCM 2.5°×1.8947°, L26 
Seland et al. [2008] 
Kirkevag et al. [2008] 

Canadian Centre for Climate 
Modeling and Analysis, Canada  CCCMA cgcm3.1 

am4, 
canesm2 

AOGCM 
AOGCM 

2.8125°×2.7673°, 
L35 

Arora et al. [2011] 
Salzen et al. [2012] 

Centre National de Recherches 
Météorologiques, France CNRM cm3 cm5 AOGCM 1.4°×1.4°, L31 Voldoire et al. [2011] 

Commonwealth Scientific and 
Industrial Research Organization / 
Queensland Climate Change 
Centre of Excellence, Australia 

2CSIRO-
QCCCE 

mk3 mk3.6 AOGCM 1.9°×1.9°, L18 Rotstayn et al. [2010] 

Geophysical Fluid Dynamics 
Laboratory, USA GFDL cm2 

am3,  
cm3 

AGCM 
AOGCM 

2.5°×2°, L23 
Donner et al. [2011] 
GFDL-AMDT [2011]  

Goddard Institute for Space 
Studies, USA GISS 

e-h,  
e-r 

e2-h,  
e2-r 

AGCM 
AOGCM 

5°×5°, L29 Kim et al. [2011] 

Institute for Numerical Mathematics, 
Russia INM cm3 cm4 AOGCM 5°×4°, L21 

Diansky et al. 2002. 
Diansky & Volodin 2002. 
Volodin & Diansky [2004] 

Institut Pierre Simon Laplace, 
France IPSL cm4 cm5a AOGCM 3.75°×1.8947°, 

L39 
Dufresne et al. [2011] 
Hourdin et al. [2006] 

Model for Interdisciplinary Research 
On Climate --- developed at Atmos. 
Ocean Res. Ins. (AORI), U. Tokyo / Nat. 
Ins. Env. Std. / Japan Agency for 
Marine-Earth Sci. & Tech., Japan 

MIROC 
3miroc3.2-
medres 

miroc4h, 
miroc5 

AOGCM 
0.5625°×0.55691°, 
L56; 1.4°×1.4°, 
L40 

Watanabe et al. [2010]  
Sakamato et al. [2011] 

Meteorological Research Institute, 
Japan MRI - cgcm3 AOGCM 

1.125°×1.1121°, 
L35 

Yukimoto et al. [2011a] 
Yukimoto et al. [2011b] 

National Center for Atmospheric 
Research, USA NCAR ccsm3 4cam5-cesm1 AOGCM 

1.25°×0.9424°, 
L30 

Eaton [2011] 
Neale et al.  [2010] 

UK Met Office, Hadley Climate 
Center, UK UKMO hadgem1 

hadgem2-es, 
hadgem2-a 
hadgem2-cc 

AOGCM 
AGCM 
AOGCM 

1.875°×1.25°, L38 
HDT [2011] 
Collins et al. [2011] 
Jones et al. [2011] 

 

Note: 1, 2, 3, 4: For simplicity, acronyms “BCCR”, “CSIRO”, “miroc3.2”, and “cam5” will be used in 
the text for model descriptions. 
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Table 2:  Model outputs used in this study 

AR5 Model Variable Acronym (unit) Note 
Ice Water Path (2D) clivi (kg/m2) Mass of ice water in the column divided by area of column 

Condensed Water Path (2D) clwvi (kg/m2)  Mass of condensed (liquid+ice) water in column divided by area of column 

Mass fraction of cloud ice water (3D) cli (kg/kg) Mass fraction of cloud ice in atmospheric layer  

Mass fraction of cloud liquid water (3D) clw (kg/kg) Mass fraction of cloud liquid water in atmospheric layer 

Water Vapor Path (2D) prw  (kg/m2) Atmospheric water vapor content vertically integrated through the column 

Specific humidity (3D) hus (kg/kg) Mass fraction atmospheric water vapor in atmospheric layer   

 
Table 3:  A-Train data products used in this study 

Data source Data product Acronym (units) Estimated uncertainty 

Aqua AIRS Water Vapor Mixing Ratio H2O (g/kg) 25-30% 

Aqua AMSR-E Water Vapor Path WVP (kg/m2) 20% 

Aqua MODIS Ice Water Path 
Liquid Water Path 

IWP (g/m2) 
LWP (g/m2) 

Factor of 2 

Aura MLS Water Vapor Mixing Ratio 
Ice Water Content 

H2O (ppmv) 
IWC (mg/m3) 

≤ 20% 
Factor of 2 

CALIPSO Ice Water Content IWC (mg/m3) Factor of 2 

CloudSat 
Ice Water Content 

Liquid Water Content 
IWC (mg/m3) 
LWC (mg/m3) 

Factor of 2 
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Table 4a:  Spatial means IWCmdl  / LWCmdl  and spatial mean scores LWCIWC
mG

/ for IWC and LWC.  
Observed means and their uncertainty ranges are immediately below the labels in the top row. 

AR5 Model 
100 hPa (MLS) 

0.0438 (0.0219-0.0875) mg/m3 
215 hPa (MLS) 

2.39 (1.20-4.78) mg/m3 
600 hPa (CloudSat) 

2.77 (1.27-5.55) mg/m3 
900 hPa (CloudSat) 

24.4 (3.06-48.8) mg/m3 

IWCmdl  
IWC
mG  IWCmdl  

IWC
mG  LWCmdl  

LWC
mG  mdlLWC  

LWC
mG  

BCC csm1 0.00851 0.21 0.460 0.21 9.16 0.43 18.4 0.90 
BCCR noresm 0.0328 0.86 0.974 0.57 9.09 0.43 15.1 0.83 
CCCMA am4 0.00505 0.0 2.39 1.0 5.52 0.67 27.9 0.95 
CCCMA canesm2 0.00523 0.0 2.44 0.99 6.05 0.63 30.8 0.92 
CNRM cm5 0.00338 0.0 1.09 0.62 8.79 0.45 18.0 0.89 
CSIRO mk3.6 0.0139 0.45 1.03 0.60 2.79 1.0 23.5 0.99 
GFDL am3 1.01      0.0 6.98 0.48 5.63 0.66 15.5 0.84 
GFDL cm3 0.646 0.0 6.75 0.50 5.72 0.65 16.3 0.85 
GISS e2-h 0.0234 0.70 22.9 0.0 4.69 0.75 17.9 0.89 
GISS e2-r 0.0354 0.90 23.8 0.0 4.57 0.76 15.7 0.84 
INM cm4 0.00393 0.0 0.0729 0.0 1.75 0.78 4.53 0.39 
IPSL cm5a 0.0133 0.43 2.51 0.98 6.26 0.61 11.8 0.74 
MIROC miroc4h 0.0918 0.64 3.04 0.88 8.91 0.44 48.2 0.75 
MIROC miroc5 0.00347 0.0 1.20 0.67 8.05 0.49 42.7 0.80 
MRI cgcm3 0.00868 0.22 1.86 0.88 10.9 0.34 11.9 0.74 
NCAR cam5 0.00356 0.0 1.37 0.73 0.940 0.48 12.6 0.76 
UKMO hadgem2-a 0.00607 0.05 1.47 0.77 2.63 0.97 17.8 0.89 
UKMO hadgem2-cc 0.00330 0.0 1.20 0.67 2.98 0.97 18.5 0.90 
UKMO hadgem2-es 0.00389 0.0 1.28 0.70 2.83 0.99 17.9 0.89 

 

Table 4b:  Model spatial means H
2
O

mdl
 and spatial mean scores OH

mG 2

 for H2O.   Observed 
means and their uncertainty ranges are immediately below the labels in the top row.  

 

AR5 Model 
100 hPa (MLS) 

0.259 (±0.0259)10−2 g/kg 
215 hPa (MLS) 

0.466 (±0.0932)10−1 g/kg 
600 hPa (AIRS) 
2.58 (±0.646) g/kg 

900 hPa (AIRS) 
11.5 (±2.88) g/kg 

H
2
O

mdl
 OH

mG 2  H
2
O

mdl
 OH

mG 2  H
2
O

mdl
 OH

mG 2  H
2
O

mdl
 OH

mG 2  
BCC csm1 0.217 0.47 0.462 0.99 2.46 0.94 10.3 0.85 
BCCR noresm 0.261 0.97 0.623 0.44 2.81 0.88 10.6 0.89 
CCCMA am4 0.241 0.78 0.754 0.0 2.53 0.98 10.5 0.88 
CCCMA canesm2 0.253 0.92 0.791 0.0 2.56 0.99 10.5 0.89 
CNRM cm5 0.174 0.0 0.430 0.87 2.45 0.93 10.7 0.90 
CSIRO mk3.6 0.360 0.0 0.868 0.0 2.87 0.85 10.9 0.93 
GFDL am3 0.259 1.0 0.871 0.0 2.96 0.81 11.1 0.95 
GFDL cm3 0.247 0.84 0.740 0.021 2.70 0.94 10.7 0.90 
GISS e2-h 0.348 0.0 0.702 0.16 2.35 0.88 11.6 0.99 
GISS e2-r 0.371 0.0 0.820 0.0 2.50 0.96 11.9 0.96 
INM cm4 0.378 0.0 0.466 1.0 3.30 0.63 10.4 0.87 
IPSL cm5a 0.168 0.0 0.654 0.33 2.67 0.95 9.35 0.75 
MIROC miroc4h 0.206 0.31 0.709 0.13 2.51 0.96 10.1 0.84 
MIROC miroc5 0.00181 0.0 0.0561 0.66 2.64 0.97 10.8 0.92 
MRI cgcm3 0.395 0.0 0.747 0.0 3.14 0.71 11.2 0.96 
NCAR cam5 0.231 0.65 0.593 0.55 3.11 0.73 12.0 0.95 
UKMO hadgem2-a 0.304 0.42 0.510 0.85 2.63 0.98 10.9 0.92 
UKMO hadgem2-cc 0.252 0.91 0.407 0.79 2.35 0.88 10.2 0.85 
UKMO hadgem2-es 0.292 0.57 0.442 0.92 2.42 0.92 10.4 0.87 
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Table 5a:  Model spatial standard deviations LWCIWC
mdl

/σ  (normalized to the observed spatial 

standard deviation), and spatial variance scores LWCIWCG /
v , for IWC and LWC.  

 

Table 5b: Model spatial standard deviations OH
mdl
2σ  (normalized to the observed spatial standard 

deviation), and spatial variance scores OHG 2
v , for H2O. 

 

AR5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 

IWC
mdlσ  IWCGv  IWC

mdlσ  IWCGv  LWC
mdlσ  LWCGv  LWC

mdlσ  LWCGv  
BCC csm1 0.137 0.043 0.0949 0.0 2.88 0.49 0.384 0.66 
BCCR noresm 0.744 0.86 0.244 0.32 3.09 0.46 0.567 0.80 
CCCMA am4 0.117 0.0 0.869 0.93 3.42 0.41 0.701 0.87 
CCCMA canesm2 0.137 0.042 0.911 0.96 3.73 0.37 0.827 0.93 
CNRM cm5 0.0989 0.0 0.418 0.58 3.18 0.44 0.388 0.66 
CSIRO mk3.6 0.186 0.19 0.410 0.57 1.08 0.96 0.842 0.94 
GFDL am3 27.7 0.0 2.893 0.49 2.13 0.64 0.382 0.65 
GFDL cm3 17.1 0.0 2.570 0.55 1.93 0.68 0.320 0.59 
GISS e2-h 1.77 0.72 10.1 0.0 3.94 0.34 0.422 0.69 
GISS e2-r 2.86 0.50 10.7 0.0 3.56 0.39 0.488 0.74 
INM cm4 0.0666 0.0 0.0216 0.0 0.578 0.74 0.0767 0.074 
IPSL cm5a 0.333 0.47 0.807 0.90 2.88 0.49 0.478 0.73 
MIROC miroc4h 1.83 0.71 1.12 0.95 3.86 0.35 0.920 0.97 
MIROC miroc5 0.0592 0.0 0.433 0.60 3.56 0.39 0.666 0.85 
MRI cgcm3 0.222 0.28 0.674 0.81 3.84 0.35 0.221 0.46 
NCAR cam5 0.0929 0.0 0.492 0.66 0.451 0.62 0.668 0.86 
UKMO hadgem2-a 0.173 0.16 0.499 0.67 0.930 0.97 0.562 0.79 
UKMO hadgem2-cc 0.0936 0.0 0.407 0.57 0.996 1.0 0.449 0.71 
UKMO hadgem2-es 0.116 0.0 0.437 0.60 0.983 0.99 0.462 0.72 

AR5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 
OH

mdl
2σ  OHG 2

v  OH
mdl
2σ  OHG 2

v  OH
mdl
2σ  G

v

H
2
O  OH

mdl
2σ  G

v

H
2
O  

BCC csm1 1.53 0.0 0.476 0.13 0.671 0.56 0.846 0.80 
BCCR noresm 1.06 0.81 0.830 0.72 1.09 0.88 0.880 0.84 
CCCMA am4 2.55 0.0 1.36 0.40 0.872 0.83 1.01 0.98 
CCCMA canesm2 2.68 0.0 1.46 0.24 0.911 0.88 1.06 0.92 
CNRM cm5 0.887 0.62 0.544 0.24 0.881 0.84 0.819 0.76 
CSIRO mk3.6 3.17 0.0 1.43 0.29 1.12 0.85 1.03 0.96 
GFDL am3 2.18 0.0 1.54 0.10 1.26 0.65 1.00 1.0 
GFDL cm3 2.20 0.0 1.16 0.73 1.02 0.98 0.877 0.84 
GISS e2-h 1.34 0.0 0.993 0.99 0.754 0.67 0.951 0.94 
GISS e2-r 1.63 0.0 1.28 0.53 0.881 0.84 1.10 0.87 
INM cm4 5.43 0.0 0.754 0.59 1.21 0.71 0.891 0.86 
IPSL cm5a 0.687 0.0 0.902 0.84 1.07 0.91 0.934 0.91 
MIROC miroc4h 3.42 0.0 1.14 0.77 1.10 0.87 1.03 0.97 
MIROC miroc5 2.45 0.0 0.706 0.51 1.04 0.95 0.873 0.83 
MRI cgcm3 1.58 0.0 1.05 0.92 1.02 0.98 0.904 0.87 
NCAR cam5 1.38 0.0 0.788 0.65 1.18 0.75 0.868 0.83 
UKMO hadgem2-a 1.27 0.11 0.816 0.69 1.01 0.99 0.871 0.83 
UKMO hadgem2-cc 1.08 0.73 0.644 0.41 0.897 0.86 0.802 0.74 
UKMO hadgem2-es 1.27 0.11 0.716 0.53 0.939 0.92 0.828 0.77 
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Table 6a: Model-observation spatial correlation coefficients LWCIWC
obsmdlC /
, , and model spatial 

correlation scores LWCIWCG /
c , for IWC/LWC. 

 

Table 6b: Model-observation spatial correlation coefficients OH
obsmdlC 2
, , and model spatial correlation 

scores OH
cG 2 , for H2O. 

AR5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 

IWC
obsmdlC ,  IWCGc  IWC

obsmdlC ,  IWCGc  LWC
obsmdlC ,  LWCGc  LWC

obsmdlC ,  LWCGc  

BCC csm1 0.706 0.71 0.812 0.81 0.613 0.61 0.229 0.23 
BCCR noresm 0.592 0.59 0.814 0.81 0.645 0.64 0.434 0.43 
CCCMA am4 0.831 0.83 0.813 0.81 0.367 0.37 0.377 0.38 
CCCMA canesm2 0.728 0.73 0.784 0.78 0.371 0.37 0.336 0.34 
CNRM cm5 0.613 0.61 0.830 0.83 0.661 0.66 0.143 0.14 
CSIRO mk3.6 0.664 0.66 0.818 0.82 0.601 0.60 0.751 0.75 
GFDL am3 0.818 0.82 0.894 0.89 0.812 0.81 0.729 0.73 
GFDL cm3 0.746 0.75 0.794 0.79 0.662 0.66 0.639 0.64 
GISS e2-h 0.258 0.26 0.642 0.64 −0.0294 0.00 0.479 0.48 
GISS e2-r 0.241 0.24 0.677 0.68 −0.0364 0.00 0.523 0.52 
INM cm4 0.581 0.58 0.492 0.49 0.507 0.51 0.227 0.23 
IPSL cm5a 0.629 0.63 0.779 0.78 0.687 0.69 0.497 0.50 
MIROC miroc4h 0.849 0.85 0.834 0.83 0.658 0.66 0.471 0.47 
MIROC miroc5 0.694 0.69 0.865 0.87 0.759 0.76 0.384 0.38 
MRI cgcm3 0.632 0.63 0.788 0.79 0.697 0.70 0.205 0.21 
NCAR cam5 0.842 0.84 0.857 0.86 0.576 0.58 0.488 0.49 
UKMO hadgem2-a 0.677 0.68 0.831 0.83 0.620 0.62 0.636 0.64 
UKMO hadgem2-cc 0.732 0.73 0.893 0.89 0.736 0.74 0.477 0.48 
UKMO hadgem2-es 0.717 0.72 0.896 0.90 0.716 0.72 0.550 0.55 

AR5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 
OH
obsmdlC 2
,  OH

cG 2  OH
obsmdlC 2
,  OH

cG 2  OH
obsmdlC 2
,  OH

cG 2  OH
obsmdlC 2
,  OH

cG 2  
BCC csm1 0.805 0.80 0.845 0.85 0.882 0.88 0.929 0.93 
BCCR noresm 0.0383 0.04 0.867 0.87 0.878 0.88 0.924 0.92 
CCCMA am4 −0.075 0.00 0.898 0.90 0.921 0.92 0.946 0.95 
CCCMA canesm2 −0.159 0.00 0.881 0.88 0.916 0.92 0.950 0.95 
CNRM cm5 0.807 0.81 0.889 0.89 0.931 0.93 0.945 0.95 
CSIRO mk3.6 0.569 0.57 0.890 0.89 0.888 0.89 0.961 0.96 
GFDL am3 0.842 0.84 0.941 0.94 0.975 0.98 0.964 0.96 
GFDL cm3 0.797 0.80 0.864 0.86 0.889 0.89 0.921 0.92 
GISS e2-h −0.152 0.00 0.738 0.74 0.800 0.80 0.893 0.89 
GISS e2-r −0.221 0.00 0.764 0.76 0.853 0.85 0.931 0.93 
INM cm4 0.556 0.56 0.839 0.84 0.911 0.91 0.920 0.92 
IPSL cm5a 0.494 0.49 0.893 0.89 0.894 0.89 0.911 0.91 
MIROC miroc4h 0.558 0.56 0.857 0.86 0.912 0.91 0.957 0.96 
MIROC miroc5 0.724 0.72 0.915 0.91 0.952 0.95 0.968 0.97 
MRI cgcm3 0.807 0.81 0.809 0.81 0.833 0.83 0.889 0.89 
NCAR cam5 0.789 0.79 0.913 0.91 0.975 0.97 0.955 0.96 
UKMO hadgem2-a 0.892 0.89 0.857 0.86 0.935 0.94 0.963 0.96 
UKMO hadgem2-cc 0.868 0.87 0.906 0.91 0.936 0.94 0.935 0.94 
UKMO hadgem2-es 0.899 0.90 0.915 0.92 0.949 0.95 0.941 0.94 
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  7:  Overall scores and ranks for the AR5 models at individual pressure levels 

AR5 Model 100 hPa 215 hPa 600 hPa 900 hPa 
score rank score rank score rank score rank 

BCC csm1 0.37 7 0.50 12 0.65 10 0.73 10 
BCCR noresm 0.69 1 0.62 9 0.70 8 0.79 7 
CCCMA am4 0.27 12 0.67 7 0.70 8 0.84 3 
CCCMA canesm2 0.28 11 0.64 8 0.69 9 0.82 5 
CNRM cm5 0.34 8 0.67 7 0.71 7 0.72 11 
CSIRO mk3.6 0.31 10 0.53 11 0.86 3 0.92 1 
GFDL am3 0.44 4 0.49 13 0.76 5 0.86 2 
GFDL cm3 0.40 5 0.58 10 0.80 4 0.79 7 
GISS e2-h 0.28 11 0.42 14 0.57 12 0.81 6 
GISS e2-r 0.27 12 0.33 15 0.63 11 0.81 6 
INM cm4 0.19 14 0.49 13 0.71 7 0.56 13 
IPSL cm5a 0.34 8 0.79 1 0.76 5 0.76 9 
MIROC miroc4h 0.51     3 0.74 4 0.70 8 0.83 4 
MIROC miroc5 0.24 13 0.70 6 0.75 6 0.79 7 
MRI cgcm3 0.32 9 0.70 6 0.65 10 0.69 12 
NCAR cam5 0.38 6 0.73 5 0.69 9 0.81 6 
UKMO hadgem2-a 0.38 6 0.78 2 0.91 1 0.84 3 
UKMO hadgem2-cc 0.54 2 0.70 6 0.90 2 0.77 8 
UKMO hadgem2-es 0.38 6 0.76 3 0.91 1 0.79 7 

 

          Table 8:  Overall scores and ranks for the AR5 models.  

AR5 Model Overall Score Rank 
BCC csm1 0.56 11 
BCCR noresm 0.70 3 
CCCMA am4 0.62 8 
CCCMA canesm2 0.61 9 
CNRM cm5 0.61 9 
CSIRO mk3.6 0.65 6 
GFDL am3 0.64 7 
GFDL cm3 0.64 7 
GISS e2-h 0.52 12 
GISS e2-r 0.51 13 
INM cm4 0.49 14 
IPSL cm5a 0.66 5 
MIROC miroc4h 0.69 4 
MIROC miroc5 0.62 8 
MRI cgcm3 0.59 10 
NCAR cam5 0.65 6 
UKMO hadgem2-a 0.73 1 
UKMO hadgem2-cc 0.73 1 
UKMO hadgem2-es 0.71 2 
“Multi-model mean” (0.78) n/a 

 



Figure 1. Multi-year global and zonal mean IWP, LWP, and WVP from AR4 and AR5 models, 
and from A-Train observations as described in the text. 
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Figure 2a: Multi-year mean IWP from IPCC AR4 and AR5 models, and from A-Train 
observations. 



Figure 2b: Multi-year mean LWP from IPCC AR4 and AR5 models, and from A-Train 
observations. 



Figure 2c: Multi-year mean WVP from IPCC AR4 and AR5 models, and from A-Train 
observations. 



Figure 3a: Multi-year mean CWC and IWC (top panels) and H2O (lower panels) vertical 
profiles from AR5 models and from A-Train observations. In the top panels, IWC is plotted 
for P ≤ 215 hPa. 
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Figure 3b: Multi-year mean zonal profiles of CWC and H2O from AR4/AR5 models 
and from A-Train observations. For Aura MLS observation, H2O is plotted for P < 300 
hPa, and for Aqua AIRS observation, H2O is plotted for P ≥ 300 hPa 



Figure 4: Scatter plots of tropical 
(30°N-30°S) oceanic multi-year 
means: H2O versus IWC at 100 and 
215 hPa, H2O versus LWC at 600 
and 900 hPa. Results from each 
AR5 models and from A-Train 
observations are shown. The grey 
area and the dotted lines indicate 
the observational uncertainty. The 
dashed lines at 600 and 900 hPa 
indicate CloudSat noPcp values as 
discussed in the text. 
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Figure 5: Taylor diagrams showing the tropical (30°N-30°S) oceanic multi-year mean 
performance of the AR5 models as compared to the A-Train observations. See text for more 
explanation.  
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Figure 6: Color-coded summary of performance scores at 100, 215, 600, and 900 hPa. 
M: spatial mean performance scores Gm; V: spatial variance performance scores Gv;  
C: spatial correlation performance scores Gc. 


